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. 

THE SPACE, TJElE, AND ENERGY DISTRIWrmIONS OF THE PROTON BEAM 
O F  ME HARVARD UNIVERSITY SYNCHROCYCL,QTRON 

ABTRACT /b3fO 
The space, t i m e ,  and energy distributions of the proton-beam of the 

Harvard University Synchrocyclotron were measured. 

t i o n  was estimated from multiple-scattering approximations and measured 

by means of x-ray f i l m s  and a beam prof i le  counter telescope. merimen- 

t a l  results may be approximated by a Gaussian function with u = +0.28 cm, 

with agreement between the observed results and the multiple-scattering 

estimates being favorable. 

tained i n  an 0.84-cm beam radius. 

revealed a gross duty cycle of (4 + 2)$, depending upon proton injection 

and extraction parameters. Oscilloscope observations of the microstruc- 

ture showed that the protons occurred a t  regular 42-nsec intervals,  with 

the  width of the t i m e  distribution of protons being less than 7 nsec. 

With the delayed coincidence technique, the standard deviation of the 

t i m e  between adjacent bursts of protons was 1.4 nsec. 

The spatial distribu- 

- 

Ninety-eight percent of the protons were  con- 

Analysis of the macroburst structure 

- 

The proton beam energy w&s determined from measurements of the pro- 

ton range i n  copper and from time-of-flight measurements. 
energy determined from the range measurements was 160.3 + 0.6 MeV. 

rms range spread was measured from the d i f fe ren t ia l  range curve as 0.34 + 
0.05 g/cm , compared with the calculated straggling standard deviation 

of 0.32 g/cm . 

The beam 

The - 

2 

2 The proton energy measured by flight-time ana lygs  over 

a 355-cm f l i g h t  path wa.s 153.38 - + 4.1 MeV. 
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INTRODUCTION 

Ekperiments performed at the Harvard University Synchrocyclotron 1,2 

t o  determine the energy spectra a t  various angles for  secondavy neutrons, 

protons, and gamma rays required t h a t  the space, time, and energy dis- 

t r ibut ions of the proton beam be wellknown. 

e t e r s  

for the analysis of the spectral  data. 

Knowledge of these param- 

was necessary f o r  the design of experimental instrumentation and 

The synchrocyclotron (sham i n  Fig. 1) i s  shielded by concrete 3 t o  

8 f t  thick and i s  a frequency-modulated machine capable of producing un- 
polarized 1 G 0 ( - 3 4 ) - ~ e ~  protons a t  ra tes  as high as 5 x 10’’ protons/sec. 

Nodulation i s  achieved with a rotating 16-tooth condenser through a fre- 
quency range of 23 t o  30 */see. 

Following extraction, the beam i s  passed through three se t s  of col- 

limating slits, a steering magnet, and finally a quadrupole magnet. Beam 
location i s  controlled by the steering magnet, and focusing i s  achieved 

by optimizing the s l i t  openings and the quadrupole magnet current. 

a 

BEAM DISJXIBIIPION IN SPACE 

The spa t i a l  distribu-Lion of protons perpendicular t o  the beam axis 
was  measured t o  determine the region where primary reactions might have 

occurred i n  the boxribarded target. 

estimated from multiple-scattering dis t r ibut ion approximations and was 
experimentally determined f r o m  measurements made with x-ray films and 

a beam prof i le  counter telescope. 

f ract ion of protons s t r ik ing  the tasget  was estimated. For all spec- 

tral measurements,192 the size and shape of the bean were essent ia l ly  

the  same, and the results of calculations fo r  estimating proton losses 

a re  applicable i n  a l l  experiments. 

The dis t r ibut ion at  the ta rge t  was 

The results were compared and the 

1. Neutron Phys. Mv. Ann. Progr. Rept. Aug.  1, 1963, ORNL-3499, 
Vol. 11. 

c 
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Calculation 

When charged particles 

5 

ofthe Proton Distribution 

pass through materials of finite thickness, 
they undergo large nmbers of electromagnetic collisions. 
of multiple collisions is characterized by numerous randomly oriented 
small-angle deflections, together w i t h  a smaller fraction of large- 
angle single-scattering deflections. 

The sequence 

!Re scattering of these particles may be represented by the root- 
and when the multiple scattering mean-square angle of scattering 8 

dominates, the nas angle is pmportional to the square root of the 
thickness of the scatterer. 
the beam perpendicular to the direction of motion. 
of protons after multiple scattering ca,n be approximated by a Gaussian 
function given by 

m' 

The scattering gives rise to a spread of 
The distribution 

where P(r) is the 
rms displacement, 

probability per unit area of finding a particle with 
r, from the beam axis: 

r = 8  D ,  
0 rIns 

with D being the distance fromthe scatterer to the point at which the 
distribution is measured. Equation (1) gives the first-order approxi- 
mation to the multiple-scattering distribution. 

Snyder and Scott,' using Fourier transforms, obtained a general 
expression for the scattering density function including all orders 
of scattering. 
form Over a wide range of. target thickness and scattering angle. 
Figure 2 compares the f'ull Snyder-Scott results with the (Gaussian) 
multiple-scattering approximation. 
Snyder and Scott: q is proportional to the projected scattering 
angle 8 

They give the results of their calculations in graphic 

The notation used is that of 

and q(s,q) is proportional to the probability density Y' 

3. H. S. Snyder and W. T. Scott, Phy s. ~ e v .  76, 270 (1949). 
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Fig. 2. Comparison of the Snyder-Scott Scattering Distribution - with 
the Gaussian Approximation fo r  q(s,q) vs q with q2 = 15.4, 8 = 21,000. 
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f'unction def'ining the fraction of protons in an angular interval 
de about 8 

encountered in this experbnt. 
m e  scatterer parameters were chosen similar to those 

Y YO 

Plotting the results of Fig. 2 on a linear graph reveals that the 
ratio of the area between the Gaussian curve and the scattering tail to 
the area in the peak is negligible. 
approximation gives sufficiently accurate results for estimating the 
scattering distribution at t h e  target plane. 

The Gaussian multiple-scattering 

For this report, the scattering distribution at the target plane 
is obtained by using the Gaussian approximation only, and the f'raction 
of protons at the target is calculated by the procedure suggested by 
Sternheimer. 4 

The r m s  angle of scatter of Eq. ( 2 )  is calculated from the expres- 

sion 

where Es is a constant equal to 21 MeV, Bc is the velocity of the inci- 
dent particle, p is its momentum, (Xs)i is the multiple-scattering 

2 length in g/cm of the Lth scatterer material, aad xi is the thickness 
of the material in the beam. 
for the passage of the protonbeam through the two monitor ionization 
chambers shown in Fig. 1. 
is obtained f r o m  the summation in Eq. (3) .  
bers, the beam is scattered by 8 mils of alumintan, 2.5 mils of aluminized 
mlar, and 5.0 cm of helium gas. 

Mylar beam pipe window. 
materials is equivalent to 0.078 g/cm of aluminum, where (Xs)u = 

23.9 g/cm2. 

The scattering distribution is determined 

The canbined scattering length of the chambers 
In passage through the cham- 

Included is an additional. 5-mil-thick 
The scattering length of the combination of 

2 

This value is used in all subsequent calculations. Defining 

4. R. M. Sternheimer, Rev. Sei. Instr. 25 (ll), 1070-1075 (1954). 
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I 
r = ro/R , 

where po i s  the rms radius of the assumed normally dis t r ibuted unscat- 

tered beam, ro the  rms sca t t e r i rg  radius as i n  Eq. (2), and R the  

of protons s t r ik ing  the ta rge t  radius of the target;  the fraction, 

may be obtained d i rec t ly  f r o m  Sternheimer ' s  curves. The value for  po, 

for  t h i s  reporting, must be estimated since i n  the experiment no measure- 

ments were made of the unscattered beam radius. 

graphs made a t  vaxious points d o n g  the  beam axis, reasanable estimates 

for  the unscattered beam radius give po = 0.17 cm. 
these calculations a re  given i n  Table 1. 

fP, 

Huwever, f'ram photo- 

The resu l t s  of 

m e r i m e n t a l  Results 

The beam dis t r ibut ion was experimentally determined by exposing 
6 f ive x - r w  f i l m  plates  i n  a beam of nominally 4 x 10 protons/sec. 

exposure, determined f'rom the charge collected i n  the ionization chambers, 

The 

was  made over a range of 1.6 ( 9.080) x lo7 to 1.3 ( 5 . 0 6 5 )  x 10 9 pro- 

tons. 

form transparency i n  the unexposed portions of the  f i l m .  

w a s  achieved by measuring the f rac t ion  of l ight  transmitted through the 

image by scanning with a photodensitometer. 

densitometer were adJusted fo r  a minimum opening of 10-y width and 0.7-mm 
height. 

f ive p la tes  are shown i n  Fig. 3. The prof i les  were aligned by defining 
the center of the  f u l l  width a t  half maximum (I;wHM) value of the t rans-  

mission curves as $he beam center l ine .  

t o  construct the composite dis t r ibut ion curve shown i n  Fig. 4. 
done as follows. 

The individual plates  were developed simultaneously t o  ensure uni -  
Initial analysis 

The s l i t  openings of the 

The scanning speed was 5 mm/min. The r e su l t s  of scanning the 

&om these data it was possible 

This was  

1. "be peak of the 1-nanocoulomb exposure curve, shown i n  Fig. 3 
and defined as unit re la t ive  beam intensi ty ,  was plot ted as point A on 
Fig. 4. 

2. Following a l ine  of constant transmission, shown by the dotted 

l i n e  i n  Fig. 3, the remaining transmission curves were intercepted at  

4 
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TABLE 1. Comparison Between the Estimated Fraction of F’rotons, f 
and Experimentally Measured Fraction of hotons, fd, Striking 

the Target as a Function of the Target Radius R 

P’ 

3.8 0.083 

0.84 0.376 
0.56 0.564 
0.28 1.120 

0.044 1 1 

0.202 0.98 0.98 
0.304 0.94 0.86 
0.607 0.35 0.39 

a. Based on r = 0.316 cm, D = 101.6 cm, and 8 = 3.11 x loe3 ra .dian.  
0 I7US 

= 0.17 cm. 
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points 3 2, & and - E. Point 

2@0 transmission level  on the 

points beyond these four were 

B has the same width dimension as the 

f irst  curve, fo r  example. The remaining 

es’dmated from a cal ibrat ion curve of 

c 

the exposure-film density relationship obtained from the transmission 
curve data of Fig. 3. 

The proton dis t r ibut ion was  a lso measured with the  prof i le  tele- 
scope shown i n  Fig, 5. The dis t r ibut ion w a s  obtained by scannine hori- 

zontally and ver t ical ly  perpendicular t o  the beam axis and recording 

coincidence counts for  fixed increments of integrated beam current as 

a function of displacement from the beam center a t  a distance of approx- 

imately 1 m f’rom the ion chamber. 

both the ver t ica l  and horizontal  scan as  well  as other points on the 

dis t r ibut ions were i n  qreement, suggesting tha t  the beam cross section 

was essentially circular.  

of the distance from the beam center l ine  as obtained with the prof i le  

telescope. 

The values obtained for FWHM f o r  

Figure 6 plo ts  proton in tens i ty  as a function 

The dis t r ibut ion curves i n  Figs. lt and 6 are essent ia l ly  Gaussian 
It was assumed from the exposures t h a t  the beam cross section i n  shape. 

was  very nearly c i rcular .  

protons f 

of a Gaussian frequency curve fo r  the f i t t e d  value of < d > 
0.28 - + 0.01 cm. 
telescope data i s  excellent. 

above, integration of the curves i n  Figd. 4 and 6 gives the same resul ts  
for  fd as shown i n  Table 1. 

If both conditions are true,  the f ract ion of 

contained within a radius d may be estimated from integration 
2 1/2 d 

= 

Agreement between the x-ray f i l m  exposures and prof i le  

Using the Gaussian frequency curve given 

Beam Ibcation S tab i l t ty  

Measurements of the timc drift of the beam location w i t h  respect 

t o  the target  center l ine  were made with Polaroid film exposures i n  the 

ta rge t  plane. Init ially,  the beam was centered on the target  by proper 

location of the spectrmeter  holder and ta rge t  positioning device. The 

location of the beam w a s  checked several times during a par t icular  experi- 

ment. 

respect t o  the ta rge t  center. 

justment of the steering magnet. 

It was observed tha t  the beam d r i f t  was  less than 5 &day with 

Corrections for the drift were m a d e  by ad- 
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DISTRIBUTION I N  TIME 

'he dis t r ibut ion of the proton beam i n  time was determined f r o m  the  

measurement of the gross structure of the beam associated with the modula- 

t i o n  frequency (macrostructure) and the f ine  time structure due t o  the 

r-f accelerating frequency (microstructure ) . 
proton beam i s  extracted only when the frequency of the accelerating vol t -  

age is  within a mrrm range. In the  Harvard synchrocyclotron, frequency 

modulation i s  achieved by a 16-tooth rotat ing capacitor operated a t  nomi- 
nal ly  18 rps. Consequently, there are 288 bursts of protons per second. 

Because of variations i n  t h e  shape of the capacitor teeth, wobble i n  i t s  

shaft, and variations i n  the rotation speed, the shape of the individual 

proton bursts var ies  i n  intensi ty  and duration. 

effect  of var ia t ion of the machine parameters on the gross duty cycle, the 
macroburst structure was studied as  a m c t i o n  of ion source posit ion and 

extraction frequency. 

In  a synchrocyclotron the 

I n  order t o  assess the 

kasurement of the Macrostructure 

The burst structure was measured w i t h  the c i r cu i t  shown i n  Fig. 7. 
An organic detector w a s  positioned i n  the beam. 

able on the  downswing of the FM cycle j u s t  before proton extraction; so 

the elapsed time betireen the marker pulse and a subsequent proton signal 

w a s  analyzed and stored. The macrostructure was analyzed f o r  the bursts 

A marker pulse was  avai l -  

associated with selected tee th  of the  rotat ing condenser and also f o r  the  

composite structure. The duty factor w a s  measured fo r  the composite 

structure.  

The gross duty factor  can be obtained by measuring the r a t i o  of the 

square of the average height o f t h e  burst  t o  the average value of the 

height squared. 

from the detector used i n  Fig. 7. 
The burst height i s  proportional t o  the output current 

So the  duty factor  i s  obtained from 

, < I >2 
< I2 > 

df=- 

where I i s  the time-dependent phototube current averaged Over the rf 
(22 Mc) f ine  structure.  
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With the 
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A typical  composite burst shape i s  shown i n  the inse t  i n  Fig. 7. By 
approximating the burst  by a triangle, rectangle, o r  both, the macroduty 

factor can be obtained quite readily by using t h i s  definit ion.  

values obtained were (4 - + 2)$. 

Eq. (4) t o  evaluate current from a phototube viewing a p la s t i c  s c in t i l l a -  
t o r  w a s  (3  f 0.2)$. 
f'ram 2.4 t o  4. 
runs. 
variat ion i n  the extraction frequency, and 2.8 t o  4.9$ f o r  variations i n  

the  ion source orientation a t  t h e  extraction frequency of maximum duty 

factor.  

' & p i e d  

The value obtained by Iefrancois5 using 

6 %bel and Maienschein have reported values ranging 

by measuring random coincidence events during several 
Values fo r  the duty cycle of 2.2 t o  4.55% were measured f o r  a 59 

7 In calculations t h a t  Peelle and Cowpefihwaite made by using data 

f r o m  individual proton-counting measurements, the duty factor w a s  measured 

as 2$ for  very 1017 counting rates  and mrrow B s l i t  openings (see Fig. 1). I t  I t  

Measurement of the Microstructure 

A further study of the  burst  structure reveals a f iner  dis t r ibut ion 
with bursts  occurring a t  the rf I t  of protons, called the 'hicrostructure, 

accelerating frequency. 

t he  design of fast-timing circui ts  and gating c i rcu i t s .  

cu i t s  were used t o  enable the detectors t o  operate only during the micro- 

bursts t o  minimize the accumulation of background counts due t o  secondary 

neutrons. 

Knowledge of the microstructure was essent ia l  i n  

The gating c i r -  

In measuring the microstructure an oscilloscope vas used t o  observe 

individual proton pulses from a detector placed i n  the beam, together 

with the beam profi le  telescope,for which delayed coincidence techniques 

were used. 

5 .  J. kfrancois ,  Rev. Sei. Instr .  32, 9% (1951). 

6.  W. Zobel and F. C. Maienschein, private communication. 

7. Neutron Fhys* Div. Ann. Progr. Rept. Aup;. 1, l$3, ORNL-3499, Vol. 11, 
P* 73. 

.. 
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The pulses f’rom an organic sc in t i l l a to r  placed i n  the proton beam 

were used simultaneously t o  trigger an oscilloscope and provide the ver- 

t i c a l  input. 

cathode ray tube the relationship between the proton-induced trigger 

pulse and the pulse  formation due t o  subsequent protons. 

frequency was  constant, nominally 22.7 Mc/sec, w i t h  the width of the 

dis t r ibut ion of protons being l e s s  than 7 nsec. 

the microstructure for  many thousand pulses showed t h a t  the pulses oc- 

curred a t  regular intervals  of - 42 nsec, and i n  no case w a s  there  any 
evidence of structure between the main pulses. 

The f ine tlme structure w a s  measured by observing on the 

The pulse 

Observations made of 

In the microstructure measurements with the prof i le  telescope, the 

delay i n  one leg of the c i r cu i t  was varied u n t i l  coincidence was  estab- 

lished between successive bursts. 

tween bursts. 

profile,  was  Located at one edge of the beam i n  order t o  count approxi- 

mately 1 proton/sec. 

3.5 to  6.2 nsec, depending on the coincidence c i r cu i t  used. 

quired delay t o  establish coincidence between microbursts varied from 
41.2 t o  44 nsec, w i t h  the breadth of the peak varying f’rom 4.5 t o  6.3 
nsec for  the above resolving t i m e s .  

The time spectra of Fig. 8 can be approximated accurately by a 

The amount of delay i s  the time be- 

The telescope, i n i t i a l l y  set up t o  measure the beam 

m i c a 1  resolution for coincidence varied from 

The re- 

Typical resu l t s  are shown i n  Fig. 8. 

Gaussian distribution, and i t s  variance computed by the usual methods. 

The coincidence resolution curve i s  approximately trapezoidal i n  shape. 

The time distribution of pulses i n  adjacent microbursts can be calculated 

by taking the difference between the variance of the Gaussian and tha t  of 
the trapezoidal distributions.  The value obtained for the standard devi- 

a t ion  of the time between pulses i n  adjacent bursts i s  1.4 nsec. 

PROTON ENERGY DISTRIBUTION 

The energy dis t r ibut ion of the proton beam was determined from 

measurements of the proton range i n  copper and from flight-time measure- 
ments. 

of the beam af’ter passage through the monitor ionization chambers shown 
i n  Fig. 1. 

These measurements were made i n  order t o  determine the energy 
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Beam Energy from Proton Range i n  Copper 

Two independent measurements were made of the proton range i n  cop- 
8 per, one by Johnson 

Love ( i n  January l963), and different  absorber blocks and detectors were 
used. 

( i n  September 1962) and the other by Santoro and 

Two detectors irere located i n  the beam path as shown i n  Fig. 9. 
The coincidence counts were recorded as a function of the thickness of 

the absorber placed between the  two detectors fo r  a fixed number of pro- 

tons measured by the "A" detector, and are  plot ted i n  Fig. 10 for both 

measurements. The energy i s  determined from the curve by treating the 

maximum slope of the integral  curve (the peak of the d i f f e ren t i a l  curve) 

as the mean range f'rom protons of the incident energy i n  copper. 

corresponds approximately t o  one-half the count r a t e  w i t h  no absorber 

present. 

This 

The Range from Johnson's Measurements.-- The amount of copper pres- 
2 a t  the mean range w a s  26.326 g/cm . ent 

51.4 cm of air, 0.159 cm of CH, and 0.0051 cm of Al, corresponding t o  

0.062,0.168, and 0.01Lt g/cm 
material. 

Preceding the copper were 

2 surface density, respectively, for  each 

The r a t i o  of  the average energy lo s s  per un i t  path length 

of a given material R, t o  ( d ~ / d ~ ) &  i s  a slowly varying m c t i o n  of en- 

ergy, and conversion t o  equivalent copper thickness depends only on 
approximate values for the incident energy. 

these ra t ios ,  Johnson obtained a t o t a l  copper-equivalent thickness of 

0.348 g/cm2. Including an additional 0.011 g/cm copper equivalent 

thickness fo r  the s m a l l  amount of a i r  between the absorber and the 

detector, the t o t a l  mount of material i n  the beam was equivalent t o  

26.755 g/cm of copper. 

U s i n g  160 MeV t o  evaluate 

2 

"B" 

2 

I n  these calculations, there were two main sources of error :  the 

determination of the t o t a l  copper thickness and the conversion between 

8. C. F. Johnson, private communication. No information was  available 
concerning B bias,  which i s  here presumed t o  be very low. 
uncertainty was given for  determinine; the m e a n  range from the exper- 
imental data. 

No 
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the mean range and energy. 
copper introduced a - +0.19$ error f o r  one standard deviation based on 
measurements of the absorber dimensions and weight. Errors due t o  

conversion t o  energy are discussed l a te r .  Then, f inal ly ,  the mean 
range obtained by Johnson fo r  the beam protons i n  copper i s  26.755 - + 

Measurements of the volume density of the  

2 0.051 g/cm 0 

Range Due t o  Santoro and bve.  -- The second of the range-energy 

measurements was  made with the apparatus shown i n  Fig. 9. !Fhe bias 

l eve l  of the "B" detector was se t  t o  count protons with energy i n  ex- 

cess of 2 - + 0.5 MeV. 
0*393-&kV gamma rays of 22Na and '13Sn, respectively. 
i n  the measurement of the energy result ing f r o m  the use of t h i s  bias 

se t t ing  was  l e s s  than O.l$, well within the other uncertainties. 
2 

the additional material i n  

Ihe bias w a s  determined by using the O.5ll-and 

The uncertainty 

The mean range of the protons was reached with 26.61 2 0.1 g/cm 
of copper. 

the beam - the air, detector material, and aluminum detector covers - 
was calculated i n  terms of the equivalent thickness of copper as 

0.376 g/cm2, giving a total of 26.98 - + 0.1 g/cm of copper. 

b e t t e r  than O.l$, and the weight was determined t o  the same order of 

magnitude. The volume density values for the a i r ,  aluminum, and detec- 

t o r  materials were based on published values and since they consti tute 

l e s s  than 2$ of the material i n  the beam, only small errors  were intro-  

duced i n  the conversion t o  equivalent copper thickness. 

26.98 - + 0.1 g/cm2, which i s  consistent with the value obta.ined e a r l i e r  by 

Johnson and i s  used i n  t h i s  report to determine the beam energy. 

range must be corrected f o r  the multiple scat ter ing of the protons i n  

copper. 

Using a code due t o  Wachter, 

2 

The absorber plates were constructed to  tolerances known t o  be 

The value fo r  the beam mean range i n  copper was thendetermined a s  

This 

The correction value, 0.5% i n  range, was estimated f r o m  

c 

I .  

. 

9. J. W. Wachter, ESCALATOR, a program fo r  the raM-7O9O which uses 
interpolation of range-tables t o  determine accumulative energy 
losses through various regions of materials (unpal ished) .  
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Bichsel 's  data fo r  multiple scat ter ing i n  nickel.'' 

experimental path length i n  copper i s  27.11 5 0.1 g/cm . 
The resul t ing 

2 

Conversion of Path Length t o  Fhergy. -- The conversion of range t o  

energy i s  based on published values for  the path length of protons i n  

copper, based on the average energy loss  per g/cm , dE/dx, obtained from 

the integration of the Bethe-Bloch equation 

2 

where 
x = path length, cm, 

z = charge number of the incident par t ic le ,  

Z = charge number of the stopping material, 

A = atomic weight, 

B = v/c, where v i s  the velocity of the par t ic le  and c i s  the speed 

of l i gh t ,  

N = Avogadro's number, 

e = electronic charge, 

m = rest mass of the electron, 
0 
I = average excitation potent ia l  per electron of stopping atom, 

Ci = "shell-correction" term t o  compensate the  e f f ec t  of nonpartici- 

patine; bound electrons 

According t o  the extent t o  which corrections a re  made for  the Ci 

term and depending on the choice of experimentally determined values for  
I, values published for  dE/dx may differ by a f e w  percent. 

For t h i s  report, Bichsel's'' values are used. These data are 

based on recently determined values fo r  I and extensive corrections 

using the C. terms. Additional credence has been given t o  Bichsel's 
1 

10. H. A. B ichse l ,  Passage of Charged Part ic les  through Matter, 
American Ins t i tu te  of Physics, Handbook, 2nd Ed., McGraw Hill, 
1963 - 
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data i n  a more recent report  by Table 2 shows a comparison, 

over an energy range Of 140 to 180 &V, between Bichsel's values and 
those of Peelle,12 Sterr~heimer,'~ Rich and Madey, 14 and Williamson 

and Boujot. 15 

Bichsel16 has noted a discrepancy between the calculated values f o r  

the m e a n  range of protons i n  copper and those obtained experimentally. 

In  the energy range between 70 t o  110, a t  150 and 1-90 &V, experimental 
path lengths axe 1.5% greater  than Bichsel's bes t  computed values. Ac- 

cordingly, the values i n  Table 2 f o r  the path length are corrected fo r  
the 1.5% difference, and the mean proton energy is  computed. 
cer ta inty i n  the correction value of 0.5% i s  estimated. 

An ufl- 

The final calculated bean energy a t  the ionization chamber was  
160.3 - 3- 0.6 ~ e v .  

The range spread may be obtained by different ia t ing the range 

energy curve. 

tons is Gaussian with the r a t io  of the ms fluctuation, 0, to the  t o t a l  
path length P given by 

The expected fluctuation i n  the path length of the pro- 

11. U. Fa.no, A n n .  Rev. Nucl. Sci. 13, 1 (1963) 

12. R. 11. Peelle, unpublished. These data use essent ia l ly  the same 
parameters used by Bichsel. 

13. R. M. Sternheimer, Phys. Rev. 115(1), 137 (1959). 

14. M. Rich and R. Madey, Range-Energy Tables, UCRL-2301 (March 1954). 

15. C. IJilliamson and J. P. Boujot, Tables of Range and Rate of Energy 
Loss of Charged Part ic les  of Energy 0.5 t o  150 &V, Report No. 2189, 
Centre d'Etudes Nucldaires de Saclay. 

16. H. A. Bichsel, Higher Shell Corrections i n  Stopping Power, Tech. 
Rept. No. 3, Department of F'hysics, University of Southern 
California, k s  Angeles. 

. 
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2 where Mc 
energy of the proton, and f (E/Mc2) i s  obtained from Bichsel's'' work 

f o r  range straggling. 

2 i s  2'7 g/cm as above. The measured straggling standard deviation ob- 

tained from the d i f fe ren t ia l  range-energy curve i s  0.34 + 0.05 g/cm . 

is  the rest mass energy of the proton i n  MeV, E i s  the kinet ic  

For 160-&v protons, f (E/Mc 2 ) = 3.645 and u = 0.3 g/cm 2 when P 

2 - 

bkasurement of the Proton lbergy by Flight Time 

The proton energy was also determined by measuring the f l i g h t  time 

of the protons, with the  apparatus shown i n  Fig. 11, over a distance 

of 355 + 1 cm. 
apart, a calibration curve of stop delay vs analyzer channel number 
was obtained. The "B" detector was then moved 355 cm fa r ther  away, 
and the experiment was repeated. The t i m e  required for  the protons 

t o  t r ave l  355 cm was obtained from the amount of change i n  the stop 

delay required t o  re-establish time coincidence. 

which are shawn i n  Fig. 12, the time required f o r  the protons t o  travel 
355 cm was 23-26 + 0.1 nsec. The uncertainty, thought t o  come f i o m  
the d i f f e ren t i a l  nonlinearity of the time-to-pulse-height converter, 

ar ises from consideration of several points along the curve i n  Fig. 12. 

With the "A" and "B" detectors positioned about 75 cm - 

From these data, 

- 

The er ror  i n  the measurement of the f l i g h t  path i s  0.27%. A l$ 
standazd er ror  i n  the delay l i n e  cal ibrat ion also exis ts ,  so t h a t  the 

t o t a l  e r ror  i n  the measurement of the f l i g h t  time i s  1.1%. The proton 

velocity i s  then 15.26 - + 0.17 cm/nsec. Correcting for  the energy loss 
(1.38 MeV) of the protons i n  the 'k" detector and air, the beam energy 

determined by f l i g h t  t i m e  i s  153.38 + 4.1 MeV. - 

Conclusions t o  the Proton Beam Measurements 

The energy obtained f r o m  the range-energy measurement, 160.3 - + 
0.6 MeV, and t h a t  obtained fram the time-of-flight measurement, 153.38 5 
4.1 kV, are i n  mild disagreement. 
ment with published17 values for the bean energy of 158 - + 2 MeV. 

Both values, however, are i n  agree- 

17. F. T. Howard, Qclotrons and High Energy Machines, Om-2644 
(1958). 
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